

2002 Mathematics

Advanced Higher

Finalised Marking Instructions

SECTION A (Mathematics 1 and 2)

A1.	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Second row 1 mark Third row 1 mark Third row 1 mark Values 2E1. (available whatever method used above) Total 5
A2.	$i^{4} + 4i^{3} + 3i^{2} + 4i + 2$ = 1 - 4i - 3 + 4i + 2 = 0 Since <i>i</i> is a root, - <i>i</i> must also be a root. Thus factors (<i>z</i> - <i>i</i>) and (<i>z</i> + <i>i</i>) give a quadratic factor <i>z</i> ² + 1. $\frac{z^{2} + 4z + 2}{z^{2} + 4z + 2}$ $\frac{z^{4} + z^{2}}{4z^{3} + 2z^{2} + 4z}$ $\frac{4z^{3} + 4z}{2z^{2} + 4z}$ Solving <i>z</i> ² + 4 <i>z</i> + 2 = 0 gives <i>z</i> = -2 ± $\sqrt{2}$.	 1 mark for verifying and stating 1 for getting -<i>i</i>. 1 for z² + 1 is a factor. 1 for factorisation. 1 for the other two roots. Total 5
A3.	At $A, x = -1$ so $t^2 + t - 1 = -1$ giving t = 0 or $t = -1$. When $t = 0$, y = 2. When $t = -1$, $y = 5$ so A is on the curve. $\frac{dx}{dt} = 2t + 1; \frac{dy}{dt} = 4t - 1$ $\frac{dy}{dx} = \frac{4t - 1}{2t + 1}.$ When $t = -1, \frac{dy}{dx} = \frac{-5}{-1} = 5$. The equation is (y - 5) = 5(x + 1) y = 5x + 10	 1 for solving a quadratic. 1 for the other coordinate. 1 for dx/dt and dy/dt. 1 for dy/dx. 1 for the gradient is 5. 1 for an equation.

A4.	(a) $f(x) = \sqrt{x}e^{-x} = x^{1/2}e^{-x}$ $f'(x) = \frac{1}{2}x^{-1/2}e^{-x} + x^{1/2}(-1)e^{-x}$ $= \frac{1}{2\sqrt{x}}e^{-x}(1-2x)$ (b) $y = (x+1)^2(x+2)^{-4}$ $\log y = 2\log(x+1) - 4\log(x+2)$ $\frac{1}{y}\frac{dy}{dx} = \frac{2}{x+1} - \frac{4}{x+2}$ $\frac{dy}{dx} = \left(\frac{2}{x+1} - \frac{4}{x+2}\right)y$ a = 2; b = -4	1 method mark 1 for first term 1 for second term 1 for a factorised form 1 for taking logs and expanding 1 for differentiating A logarithmic approach is needed. 1 for rearranging Total 7		
A5.	$\int_{0}^{1} \ln(1 + x) dx$ = $\int_{0}^{1} \ln(1 + x) \cdot 1 dx$	1 for introducing the factor of 1		
	$= \left[x \ln (1 + x) - \int \frac{1}{1 + x} x dx \right]_{0}^{1}$	1 for second term		
	$= \left[x \ln (1 + x) - \int \left(1 - \frac{1}{1 + x} \right) dx \right]_{0}^{1}$	2 marks for correct manipulation and integration of the second term		
	$= [x \ln (1 + x) - x + \ln (1 + x)]_0^1$ = [ln 2 - 1 + ln 2] - [0 - 0 + 0] = 2 ln 2 - 1 [\approx 0.3863].	1 for limits Total 5		
A6.	$x + 2 = 2 \tan \theta \Longrightarrow dx = 2 \sec^2 \theta d\theta$	1 for derivative		
	Also, $x = 2 \tan \theta - 2$, so $x^2 = 4 \tan^2 \theta - 8 \tan \theta + 4$, giving $x^2 + 4x + 8 = 4 \tan^2 \theta + 4$	1 for manipulation		
	$\int \frac{dx}{x^2 + 4x + 8} = \int \frac{2 \sec^2 \theta d\theta}{4 \left(\tan^2 \theta + 1 \right)}$	1 for substitution		
	$= \frac{1}{2} \int \frac{\sec^2 \theta d\theta}{\tan^2 \theta + 1}$			
	$=\frac{1}{2}\int d\theta$	1 for simplifying		
	$= \frac{1}{2}\theta + c$			
	$= \frac{1}{2} \tan^{-1} \left(\frac{x+2}{2} \right) + c$	1 for finishing Total 5		

A7.	When $n = 1, 4^{n} - 1 = 4 - 1 = 3$ so true when $n = 1$. Assume $4^{k} - 1$ is divisible by 3. Consider $4^{k+1} - 1$. $4^{k+1} - 1 = 4.4^{k} - 1$	1 for the case $n = 1$.Other1 for the assumption.Strategies1 for moving to $k + 1$.		
	$= (3 + 1)4^{k} - 1$ $= 3.4^{k} + (4^{k} - 1)$	1 for a correct formulation.		
	Since both terms are divisble by 3 the result is true for $k + 1$. Thus since true for $n = 1, 4^n - 1$ is	1 for conclusion.		
	divisible by 3 for all $n \ge 1$.	(The involvement of Σnot penalised.) Total 5		
A8.	$\frac{x^2}{(x+1)^2} = A + \frac{B}{x+1} + \frac{C}{(x+1)^2}$ so			
	$x^{2} = A(x+1)^{2} + B(x+1) + C$	1 for valid method		
	$= Ax^{2} + (2A + B)x + A + B + C$ Hence $A = 1, B = -2$ and $C = 1$.	2E1 for the values		
	(a) $y = 1 - \frac{2}{x+1} + \frac{1}{(x+1)^2}$			
	so there is a vertical asymptote $x = -1$ and a horizontal asymptote $y = 1$.	1 for vertical asymptote 1 for horizontal asymptote		
	(b) $\frac{dy}{dx} = \frac{2}{(x+1)^2} - \frac{2}{(x+1)^3} = 0$ at SV	1 for derivative (however obtained)		
	$\Rightarrow (x+1) = 1 \Rightarrow x = 0, y = 0$	1 for solving		
	$\frac{d^2y}{dx^2} = \frac{-4}{(x+1)^3} + \frac{6}{(x+1)^4}$	1 for justification		
	= -4 + 6 when x = 0 Thus (0, 0) is a minimum.	1 for (0, 0) is a minimum		
	(c)			
		1 for asymptotesor1 for each1 for branchesbranchTotal 11		

A9. (a)

$$\frac{dy}{dx} = \frac{dx}{dt} = \frac{-xy^2}{-x^2y} = \frac{y}{x}$$

$$\int \frac{1}{y} dy = \int \frac{1}{x} dx$$

$$\ln y = \ln x + C$$

$$x = 1, y = 2 \Rightarrow C = \ln 2$$

$$\ln y = \ln x + \ln 2$$

$$y = 2x$$
(b)

$$\frac{dx}{dt} = -x^2(2x) = -2x^3$$

$$\int \frac{1}{x^3} dx = \int -2 dt$$

$$\frac{1}{x^2} = 4t - 2D$$

$$t = 0, x = 1 \Rightarrow D = -\frac{1}{2}$$

$$\frac{1}{x^2} = 4t + 1$$

$$x = \frac{1}{\sqrt{4t + 1}}$$
1 mark

1 m

A10.	$S_n(1) = 1 + 2 + 3 + \dots + n$ = $\frac{1}{2}n(n + 1)$	 for recognising that S_n(1) requires special treatment. for evaluating it correctly.
	$(1 - x)S_n(x) = S_n(x) - xS_n(x)$ = 1 + 2x + 3x ² + +nx ⁿ⁻¹ -(x + 2x ² + 3x ³ + +nx ⁿ) = 1 + x + x ² + + x ⁿ⁻¹ - nx ⁿ	3E1 for expanding correctly and simplifying
	$= \frac{1 - x^{n}}{1 - x} - nx^{n}.$ Thus $S_{n}(x) = \frac{1 - x^{n}}{(1 - x)^{2}} - \frac{nx^{n}}{(1 - x)}$	1 for applying the sum of a GP
	as required. $\frac{2}{3} + \frac{3}{3^2} + \frac{4}{3^3} + \dots + \frac{n}{3^{n-1}} + \frac{3}{2} \cdot \frac{n}{3^n}$ $= \left(S_n \left(\frac{1}{3}\right) - 1\right) + \frac{3}{2} \cdot \frac{n}{3^n}$	1 for recognising that it relates to
	$= \frac{1 - \frac{1}{3^n}}{(1 - \frac{1}{3})^2} - \frac{n \frac{1}{3^n}}{1 - \frac{1}{3}} - 1 + \frac{3}{2} \cdot \frac{n}{3^n}$ $= \frac{9}{4} \left(1 - \frac{1}{3^n} \right) - \frac{3}{2} \cdot \frac{n}{3^n} - 1 + \frac{3}{2} \cdot \frac{n}{3^n}$	$S_n(\frac{1}{3})$. 1 for applying earlier result.
	$= \frac{5}{4} \left(1 - \frac{1}{3^n} \right)$ $\lim_{n \to \infty} \left\{ \frac{2}{3} + \frac{3}{3^2} + \frac{4}{3^3} + \dots + \frac{n}{3^{n-1}} + \frac{3}{2} \cdot \frac{n}{3^n} \right\}$	
	$=\frac{5}{4}$	1 for obtaining the limit. Total 9

SECTION B (Mathematics 3)

B1.	(a) $\overrightarrow{AB} = 2\mathbf{i} - \mathbf{k}; \overrightarrow{AC} = \mathbf{i} - \mathbf{j} - 3\mathbf{k}$	1 for the two initial vectors		
	$\overrightarrow{AB} \times \overrightarrow{AC} = \begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ 2 & 0 & -1 \\ 1 & -1 & -3 \end{vmatrix}$	1 for a cross product Vector form acceptable.		
	$= -\mathbf{i} + 5\mathbf{j} - 2\mathbf{k}$ Equation of π_1 is of the form	1 for the normal vector		
	-x + 5y - 2z = c			
$(1,1,0) \Rightarrow c = -1 + 5 = 4$ So an equation is				
	-x + 5y - 2z = 4	1 for the equation		
	(b) Normals are			
	$-\mathbf{i} + 5\mathbf{j} - 2\mathbf{k}$ and $\mathbf{i} + 2\mathbf{j} + \mathbf{k}$. So the angle between the planes is given by	1 for normals		
	$\cos^{-1}\left(\frac{-1 + 10 - 2}{\sqrt{30}\sqrt{6}}\right)$	1 for applying the scalar product		
	$= \cos^{-1}\frac{7}{6\sqrt{5}} [\approx 58.6^{\circ}]$	1 for result (must be acute) Total 7		
B2.	$A^{n} = \begin{pmatrix} n+1 & n \\ -n & 1 - n \end{pmatrix}.$ When $n = 1$,			
	RHS = $\begin{pmatrix} 1+1 & 1\\ -1 & 1-1 \end{pmatrix} = \begin{pmatrix} 2 & 1\\ -1 & 0 \end{pmatrix} = A.$			
	Therefore true when $n = 1$.	1 mark for showing true when $n = 1$		
	Assume $A^k = \begin{pmatrix} k+1 & k \\ -k & 1 - k \end{pmatrix}$.	1 for stating the assumption		
	Consider A^{k+1} .			
	$A^{k+1} = A A^k$	1 for considering $k + 1$		
	$= \begin{pmatrix} 2 & 1 \\ -1 & 0 \end{pmatrix} \begin{pmatrix} k+1 & k \\ -k & 1-k \end{pmatrix}$			
	$= \begin{pmatrix} k + 2 & k + 1 \\ -(k + 1) & -k \end{pmatrix}$	1 for this matrix		
	$= \begin{pmatrix} (k+1) + 1 & (k+1) \\ -(k+1) & 1 - (k+1) \end{pmatrix}$	1 for obtaining final matrix		
	Thus if true for k then true for $k + 1$.			
	Since true for $n = 1$, by induction, true for all $n \ge 1$.	1 for conclusion Total 6		

ВЗ.	$f(x) = \ln(\cos x) \qquad f(0) = 0$ $f'(x) = \frac{-\sin x}{\cos x} = -\tan x \qquad f'(0) = 0$ $f''(x) = -\sec^2 x \qquad f''(0) = -1$ $f'''(x) = -2\sec^2 x \tan x \qquad f'''(0) = 0$ $f''''(x) = -4\sec^3 x \tan^2 x$ $-2\sec^4 x \qquad f''''(0) = -2$	 1 for first two derivatives 1 for third and fourth derivatives 1 for evaluation at 0 		
	$f(x) = f(0) + xf'(0) + \dots$	1 method mark for series		
	$\ln(\cos x) = 0 + 0.x - 1.\frac{x^2}{2} + 0.x - 2.\frac{x^4}{4!}$ $= -\frac{x^2}{2} - \frac{x^4}{12} + \dots$	Using series for log and cos can gain full marks. 1 for an expansion Total 5		
B4.	$A = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$	1 for <i>A</i>		
	$B = \begin{pmatrix} \cos 30^\circ & -\sin 30^\circ \\ \sin 30^\circ & \cos 30^\circ \end{pmatrix} = \frac{1}{2} \begin{pmatrix} \sqrt{3} & -1 \\ 1 & \sqrt{3} \end{pmatrix}$	1 for <i>B</i>		
	$BA\begin{pmatrix} x\\ y \end{pmatrix} = \frac{1}{2} \begin{pmatrix} \sqrt{3} & -1\\ 1 & \sqrt{3} \end{pmatrix} \begin{pmatrix} 1 & 0\\ 0 & -1 \end{pmatrix} \begin{pmatrix} x\\ y \end{pmatrix}$	1 method for tackling a compositon		
	$= \frac{1}{2} \begin{pmatrix} \sqrt{3} & 1 \\ 1 & -\sqrt{3} \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = \frac{1}{2} \begin{pmatrix} \sqrt{3}x + y \\ x - \sqrt{3}y \end{pmatrix}$			
	i.e. $(x, y) \to \frac{1}{2}(\sqrt{3}x + y, x - \sqrt{3}y)$			
	$\operatorname{so} k = \sqrt{3}.$	1 for value of <i>k</i> Total 4		

B5.

$$\begin{array}{l}
\frac{d^2y}{dx^2} + 2\frac{dy}{dx} + 5y = 4\cos x \\
A.E. \text{ is } m^2 + 2m + 5 = 0 \\
\Rightarrow m = -1 \pm 2i \\
C. F. \text{ is } y = e^{-x}(A\cos 2x + B\sin 2x) \\
\text{For P.I. try } f(x) = a\cos x + b\sin x \\
f'(x) = -a\sin x + b\cos x \\
f''(x) = -a\cos x - b\sin x \\
\text{Thus} \\
(4a + 2b)\cos x + (4b - 2a)\sin x = 4\cos x \\
\Rightarrow a = 2b \Rightarrow 10b = 4 \\
\Rightarrow b = \frac{2}{5} \text{ and } a = \frac{4}{5} \\
y(x) = e^{-x}(A\cos 2x + B\sin 2x) \\
+\frac{2}{5}(2\cos x + \sin x) \\
y(0) = 1 \Rightarrow 2B - A + \frac{2}{5} \Rightarrow B = -\frac{1}{10} \\
y = \frac{e^{-x}}{10}(-8\cos 2x - \sin 2x) \\
+\frac{2}{5}(2\cos x + \sin x)
\end{array}$$
I for auxiliary equation
1 for roots
1 for outs
1 for outs
1 for outs
1 for outs
1 for substitution
1 for roots
1 for substitution
1 for outs
1 for values
1 for values
1 for value of A
1 for derivative
1 for value of B
1 for final statement
1 for final final

C1.	Quota sampling,	1
	One advantage of this method is that no sampling frame is required. One disadvantage is that it can lead to biased results.	1 1
C2.	P (B born same day as A and C born same day as A) = $1/7 \times 1/7 = 1/49$.	1
	$1/365 \times 1/365 = 1/133225$	1
	= 133224 to 1 (which is well away from 160 000 to 1) so disagree	1
	$50000 \times 1/33225 = 0.375$	1
	so about once every 3 years (or 3 times in 8 years)	1
C3.	Assume that standard deviation is still 28 seconds.	1
	H_0 : μ = 453	1
	$ \begin{array}{llllllllllllllllllllllllllllllllllll$	1
	$z = \frac{\bar{x} - \mu}{\sigma / \sqrt{n}} = \frac{442 - 453}{28 / \sqrt{50}} = -2.78$	1
	$P(z < -2.78) = \Phi(-2.78) = 1 - 0.9973 = 0.0027$	
	so that the p-value = $2 \times 0.0027 = 0.0054$	1
	$0.0054 < 0.01$ so reject H_0 at the 1% level.	1
	i.e. there is evidence that the mean service time has changed.	1
C4.	$\hat{p} \pm 2.58 \sqrt{\frac{\hat{p}\hat{q}}{n}}$	1

SECTION C (Statistics 1)

 $\hat{p} \pm 2.58 \sqrt{\frac{\hat{p}\hat{q}}{n}}$ $= \frac{80}{250} \pm 2.58 \sqrt{\frac{\frac{80}{250} \times \frac{170}{250}}{250}}$ 1

$$-\frac{1}{250} \pm 2.38 \sqrt{-250}$$

$$= 0.32 \pm 0.08 \text{ (or } 0.24 \rightarrow 0.40)$$
1

a subscript of 100 of intervals calculated using 00%

In the long term 99 out of 100 of intervals calculated using 99%	
confidence will contain the 'true' value of the parameter being estimated.	1

C5.		number of shock reactions in groups of 1200 will have the binomial ribution with parameters $n = 1200$ and $p = 1/2000$.	1
		s distribution can be approximated by the Poisson distribution a parameter $1200 \times 1/2000 = 0.6$.	1
	P (X	$(X > 2) = 1 - P(X \le 2)$	1
	= 1	$-\left(e^{-0.6} \cdot \frac{0.6^0}{0!} + e^{-0.6} \cdot \frac{0.6^1}{1!} + e^{-0.6} \cdot \frac{0.6^2}{2!}\right)$	
	= 1	-(0.54881 + 0.32929 + 0.09879)	
	= 1	-0.97689 = 0.023	1
	(arit	thmetical working not required as could be done on a Ti83)	
C6.	(a)	P(X < 25)	1
		$= P\left(Z < \frac{25 - 25.5}{0.4}\right)$	
		= P(Z < -1.25)	1
		$= 1 - \Phi(1.25) = 1 - 0.8944 = 0.1056$	1
	(b)	The distribution of the number of underweight bags is binomial	1
		with parameters $n = 40$ and $p = 0.1056$.	1
		P(No underweight bags) = ${}^{40}C_0 (0.1056)^0 (0.8944)^{40} = 0.0115$	1
	(c)	The mean weight of the sample of 40 bags must be less than 25 kg.	1
		$P(\overline{X} < 25) = P\left(Z < \frac{25 - 25.5}{0.4/\sqrt{40}}\right)$	1
		= P(Z < -7.9)	1
		≈ 0	1
	or		
		$T \sim N(1020, 6.4)$	
		and $P(T < 1000) = P(Z < -7.9)$	
		≈ 0.	

SECTION D (Numerical Analysis 1)

D1.
$$L(x) = \frac{(x-1.3)(x-1.8)}{(-0.3)(-0.8)} 0.758 + \frac{(x-1.0)(x-1.8)}{(0.3)(-0.5)} 1.106 + \frac{(x-1.0)(x-1.3)}{(0.8)(0.5)} 0.994$$
$$= (x^2 - 3.1x + 2.34) 3.158 - (x^2 - 2.8x + 1.8) 7.373 + (x^2 - 2.3x + 1.3) 2.485$$
$$= -1.730x^2 + 5.139x - 2.651$$
4
D2.
$$f(x) = \sin 2x; \quad f'(x) = 2 \cos 2x; \quad f'''(x) = -4 \sin 2x;$$
$$f'''(x) = -8 \cos 2x; \qquad f^{''}(x) = 16 \sin 2x$$
Taylor polynomial is
$$p\left(\frac{\pi}{4} + h\right) = \sin \frac{\pi}{2} - \frac{4h^2}{2} \sin \frac{\pi}{2} + \frac{16h^4}{24} \sin \frac{\pi}{2}$$
$$= 1 - 2h^2 + \frac{2}{3}h^4$$
3 sin 96° = sin (\pi/2 + \pi/30) and h = \pi/60Second degree approximation is
$$1 - 2\left(\frac{\pi}{60}\right)^2 = 1 - 0.0055 = 0.9945$$
2
Principal truncation error term is $\frac{2}{3}\left(\frac{\pi}{60}\right)^4 = 0.000005$ Hence second order estimate should be accurate to 4 decimal places. 2
D3. Let quadratic through (x_0, f_0). (x_1, f_1). (x_2, f_2) be
$$y = A_0 + A_1(x - x_0) + A_2(x - x_0)(x - x_1).$$
Then $f_0 = A_0; \qquad f_1 = A_0 + A_1h; \qquad f_2 = A_0 + 2A_1h + 2A_2h^2$ and so $A_1 = \frac{f_1 - f_0}{h} = \frac{\Delta f_0}{h}; \qquad A_2 = \frac{f_2 - 2f_1 + f_0}{2h^2} = \frac{\Delta^2 f_0}{2h^2}.$ Thus $y = f_0 + p\Delta f_0 + \frac{1}{2}p(p - 1)\Delta^2 f_0$ 5 (Can also be done by an operator expansion of $(1 + \Delta p^2)$
D4. (a) Maximum error is 8\varepsilon is 8\varepsilon 0.0005 = 0.004. 1
(b) $\Delta^2 f_1 = 0.045$ 1
(c) Third degree polynomial would be suitable (constant differences). 1
(d) Working from $x = 3.2, p = 0.1$ f(0.321) = 0.459 + 0.122 - 0.002 + 0.000 = 0.479

D5. (a) Simpson's rule calculation is:

x	f(x)	m_1	$m_1 f_1(x)$	m_2	$m_2 f_2(x)$
1	0.4657	1	0.4657	1	0.4657
1.5	0.8320			4	3.3280
2	1.1261	4	4.5044	2	2.2522
2.5	1.0984			4	4.3936
3	0.8238	1	0.8238	1	0.8238
			5.7939		11.2633

Hence $I_2 = 5.7939/3 = 1.9313$ and $I_4 = 11.2633 \times 0.5/3 = 1.8772$

(b) Maximum truncation error $\approx 2 \times 0.324/180 = 0.0036$

1 1

4

Hence suitable estimate is $I_4 = 1.88$

(c) With *n* strips and step size 2h, the Taylor series for expansion of an integral approximated by Simpson's rule (with principal truncation error of O (h^2)) is

 $I = I_n + C(2h)^4 + D(2h)^6 + \dots = I_n + 16Ch^4$ (1)

With 2n strips and step size h, we have

$$I = I_{2n} + Ch^{4} + Dh^{6} + \dots$$
(2)
16 × (2) - (1) gives 15I = 16I_{2n} - I_n + O(h⁶)

i.e.
$$I \approx (16I_{2n} - I_n)/15 = I_{2n} + (I_{2n} - I_n)/15$$
 3

$$I_3 = 1.8772 + (1.8772 - 1.9313)/15 = 1.8736$$

or 1.874 to suitable accuracy

SECTION E (Mechanics 1)

E1. (a) From the equation of motion for the vertical motion

$$\dot{v} = V \sin 45^\circ - gt = \frac{1}{\sqrt{2}}V - gt.$$
 1

The shell attains its maximum height when

$$\dot{y} = 0 \implies V = \sqrt{2} gt = 69.3 \text{ m s}^{-1}.$$
 1

(b) The shell hits the ground again after 10 seconds. From the equation of motion for horizontal motion

$$x = V \cos 45^{\circ} t = \frac{1}{\sqrt{2}} V t.$$
 1

The range is

$$R = \frac{1}{\sqrt{2}} Vt \approx 490 \text{ m.}$$

E2. (a) The position of the car is

$$x_C = \frac{1}{2}at^2, \qquad 1$$

1

1

and the position of the lorry

$$x_L = Ut + \frac{1}{4}at^2.$$

When the car and the lorry draw level

$$\begin{aligned} x_C &= x_L \\ \Leftrightarrow t \left(\frac{1}{4} a t - U \right) &= 0 \end{aligned}$$

$$\Leftrightarrow t = 0 \text{ or } t = \frac{4U}{a}$$

and as
$$t > 0$$
 we take $t = \frac{40}{a}$.

(b) When the car draws level with the lorry it has travelled

$$x_C = \frac{1}{2} a \left(\frac{4U}{a}\right)^2 = \frac{8U^2}{a}.$$
 1

$$N + P\sin 30^\circ = mg\cos 30^\circ$$

$$\Rightarrow N = \sqrt{3}g - \frac{1}{2}P$$

$$= \frac{1}{2} (2\sqrt{3} g - P).$$
 1

The frictional force is

$$F = \mu N = \frac{1}{4} (2\sqrt{3} g - P).$$
 1

(b) Resolving parallel to the plane and using Newton II

$$P\cos 30^\circ = mg\sin 30^\circ + F$$

$$\Leftrightarrow \frac{\sqrt{3}}{2}P = g + \frac{1}{4}(2\sqrt{3}g - P)$$

$$\Leftrightarrow \frac{1}{2}(\sqrt{3} + \frac{1}{2})P = (1 + \frac{1}{2}\sqrt{3})g \qquad 1$$

$$\Leftrightarrow P = \frac{2(2+\sqrt{3})g}{(2\sqrt{3}+1)} \approx 16.4 \text{ N}.$$
 1

E4. (a) Resolving forces horizontally gives

$$T_1 \cos 30^\circ = T_2 \cos 60^\circ$$
 1

$$\Rightarrow \frac{\sqrt{3}}{2}T_1 = \frac{1}{2}T_2$$

$$\Rightarrow T_2 = \sqrt{3} T_1 > T_1.$$

$$ma = T_1 \sin 30^\circ + T_2 \sin 60^\circ - mg$$

$$\Rightarrow \frac{1}{2}T_1 + \frac{\sqrt{3}}{2}T_2 = m(a+g) \qquad 1$$

$$\frac{1}{2}\frac{1}{\sqrt{3}}T_2 + \frac{\sqrt{3}}{2}T_2 = m(a+g)$$
1

$$\frac{1}{2}\left(\frac{1}{\sqrt{3}} + \sqrt{3}\right)T_2 = m(a + g)$$

$$\Rightarrow T_2 = \frac{\sqrt{3}}{2}m(a+g)$$
 1

E5. (a) Since
$$\mathbf{a}_A = -\frac{2}{5}t\mathbf{i}$$
, $\mathbf{v}_A(t) = -\frac{1}{5}t^2\mathbf{i} + \mathbf{c}$.
Since $\mathbf{v}_A(0) = 10\mathbf{i}$, we have $\mathbf{c} = 10\mathbf{i}$ so
 $\mathbf{v}_A(t) = (10 - \frac{1}{5}t^2)\mathbf{i}$ 1

Integrating again gives

$$\mathbf{r}_A(t) = (10t - \frac{1}{15}t^3)\mathbf{i} + \mathbf{c}_2$$

but since $\mathbf{r}(0) = \mathbf{0}$ then $\mathbf{c}_2 = \mathbf{0}$ and
 $\mathbf{r}_A(t) = \frac{t}{15}(150 - t^2)\mathbf{i}$

(b)(i)

$$\dot{\mathbf{r}}_B = \frac{1}{15} \{ 75 - 3t^2 \} \mathbf{i} = \mathbf{0}$$
 when 1
 $3t^2 = 75.$ 1

1

$$t = 5$$

When $t = 5$ $\mathbf{r}_B = \frac{1}{15} \{ 45 + 375 - 125 \} \mathbf{i} + 4\mathbf{j}$
 $= \frac{59}{3}\mathbf{i} + 4\mathbf{j}.$ 1

So the distance from the origin =
$$\sqrt{\left(\frac{59}{3}\right)^2 + 4^2} \approx 20.1 \text{ m}$$
 1

(ii)
$$\mathbf{r}_A - \mathbf{r}_B = \frac{1}{15}t(150 - t^2)\mathbf{i} - \frac{1}{15}(45 + 75t - t^3)\mathbf{j} - 4\mathbf{j}$$

 $= \frac{1}{15}(75t - 45)\mathbf{i} - 4\mathbf{j} = (5t - 3)\mathbf{i} - 4\mathbf{j}$ 1

$$|\mathbf{r}_{A} - \mathbf{r}_{B}|^{2} = (5t - 3)^{2} + 16$$
 1

To find the minimum value

$$\frac{d}{dt} \left(\left| \mathbf{r}_A - \mathbf{r}_B \right|^2 \right) = 2 \left(5t - 3 \right) \times 5 = 0$$
1
occurs when $t = \frac{3}{5}$.
1

so the minimum occurs when
$$t = \frac{3}{5}$$
. 1
The minimum distance is then $\sqrt{16} = 4$ m. 1

[END OF MARKING INSTRUCTIONS]