X100/701

NATIONAL QUALIFICATIONS 2004 FRIDAY, 21 MAY 1.00 PM - 4.00 PM MATHEMATICS ADVANCED HIGHER

Read carefully

- 1. Calculators may be used in this paper.
- 2. Candidates should answer all questions.
- 3. Full credit will be given only where the solution contains appropriate working.

Answer all the questions.

Marks

31

2

2

2

- 1. (a) Given $f(x) = \cos^2 x \ e^{\tan x}$, $-\frac{\pi}{2} < x < \frac{\pi}{2}$, obtain f'(x) and evaluate $f'(\frac{\pi}{4})$.
 - (b) Differentiate $g(x) = \frac{\tan^{-1} 2x}{1 + 4x^2}$.
- 2. Obtain the binomial expansion of $(a^2 3)^4$.
- 3. A curve is defined by the equations

$$x = 5\cos\theta,$$
 $y = 5\sin\theta,$ $(0 \le \theta < 2\pi).$

- Use parametric differentiation to find $\frac{dy}{dx}$ in terms of θ .
- Find the equation of the tangent to the curve at the point where $\theta = \frac{\pi}{4}$.
- 4. Given z = 1 + 2i, express $z^2(z + 3)$ in the form a + ib.

Hence, or otherwise, verify that 1 + 2i is a root of the equation

$$z^3 + 3z^2 - 5z + 25 = 0.$$

Obtain the other roots of this equation.

5. Express $\frac{1}{x^2 - x - 6}$ in partial fractions.

Evaluate
$$\int_0^1 \frac{1}{x^2 - x - 6} dx.$$

6. Write down the 2 \times 2 matrix M_1 associated with an anti-clockwise rotation of $\frac{\pi}{2}$ radians about the origin.

Write down the matrix M_2 associated with reflection in the x-axis.

Evaluate $M_2\,M_1$ and describe geometrically the effect of the transformation represented by $M_2\,M_1$.

- 7. Obtain the first three non-zero terms in the Maclaurin expansion of $f(x) = e^x \sin x$.
- 8. Use the Euclidean algorithm to show that (231, 17) = 1 where (a, b) denotes the highest common factor of a and b.

Hence find integers x and y such that 231x + 17y = 1.

9. Use the substitution $x = (u-1)^2$ to obtain $\int \frac{1}{(1+\sqrt{x})^3} dx$.

10. Determine whether the function $f(x) = x^4 \sin 2x$ is odd, even or neither. Justify your answer.

3

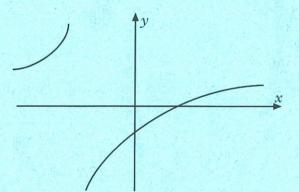
11. A solid is formed by rotating the curve $y = e^{-2x}$ between x = 0 and x = 1 through 360° about the x-axis. Calculate the volume of the solid that is formed.

5

12. Prove by induction that $\frac{d^n}{dx^n}$ $(xe^x) = (x+n)e^x$ for all integers $n \ge 1$.

5

13. The function f is defined by $f(x) = \frac{x-3}{x+2}$, $x \ne -2$, and the diagram shows part of its graph.



3

(a) Obtain algebraically the asymptotes of the graph of f.

2

(b) Prove that f has no stationary values.

2

(c) Does the graph of f have any points of inflexion? Justify your answer.

3

(d) Sketch the graph of the inverse function, f^{-1} . State the asymptotes and domain of f^{-1} .

14. (a) Find an equation of the plane π_1 containing the points A(1, 0, 3), B(0, 2, -1) and C(1, 1, 0).

4

Calculate the size of the acute angle between π_1 and the plane π_2 with equation x + y - z = 0.

3

(b) Find the point of intersection of plane π_2 and the line

$$\frac{x-11}{4} = \frac{y-15}{5} = \frac{z-12}{2} \,.$$

[Turn over for Questions 15 and 16 on Page four

78	A.		7	
- / 1	//	~	 n	0
- / 1	$v = \iota$	•	ĸ	V

5

2

4

3

2

15. (a) A mathematical biologist believes that the differential equation $x\frac{dy}{dx}-3y=x^4 \text{ models a process.}$ Find the general solution of the differential equation.

Given that y = 2 when x = 1, find the particular solution, expressing y in terms of x.

(b) The biologist subsequently decides that a better model is given by the equation $y \frac{dy}{dx} - 3x = x^4$.

Given that y = 2 when x = 1, obtain y in terms of x.

- **16.** (a) Obtain the sum of the series 8 + 11 + 14 + . . . + 56.
 - (b) A geometric sequence of positive terms has first term 2, and the sum of the first three terms is 266. Calculate the common ratio.
 - (c) An arithmetic sequence, A, has first term a and common difference 2, and a geometric sequence, B, has first term a and common ratio 2. The first four terms of each sequence have the same sum. Obtain the value of a.

Obtain the smallest value of n such that the sum to n terms for sequence B is more than **twice** the sum to n terms for sequence A.

[END OF QUESTION PAPER]