X100/13/01

NATIONAL QUALIFICATIONS 1.00 PM - 4.00 PM 2012

MONDAY, 21 MAY

MATHEMATICS ADVANCED HIGHER

Read carefully

- Calculators may be used in this paper.
- 2 Candidates should answer all questions.
- 3 Full credit will be given only where the solution contains appropriate working.

Answer all the questions

2

1. (a) Given $f(x) = \frac{3x+1}{x^2+1}$, obtain f'(x).

3

4

Marks

- (b) Let $g(x) = \cos^2 x \exp(\tan x)$. Obtain an expression for g'(x) and simplify your answer.
- 2
- **2.** The first and fourth terms of a geometric series are 2048 and 256 respectively. Calculate the value of the common ratio.
- 4

Given that the sum of the first n terms is 4088, find the value of n.

3

3. Given that (-1 + 2i) is a root of the equation

$$z^3 + 5z^2 + 11z + 15 = 0,$$

obtain all the roots.

4

Plot all the roots on an Argand diagram.

2

- **4.** Write down and simplify the general term in the expansion of $\left(2x \frac{1}{x^2}\right)^9$.
- 3

Hence, or otherwise, obtain the term independent of x.

- 2
- 5. Obtain an equation for the plane passing through the points P(-2, 1, -1), Q(1, 2, 3) and R(3, 0, 1).
- 5

6. Write down the Maclaurin expansion of e^x as far as the term in x^3 .

- 1
- Hence, or otherwise, obtain the Maclaurin expansion of $(1 + e^x)^2$ as far as the term in x^3 .
- 4

- 7. A function is defined by f(x) = |x + 2| for all x.
 - (a) Sketch the graph of the function for $-3 \le x \le 3$.

2

(b) On a separate diagram, sketch the graph of f'(x).

2

8. Use the substitution $x = 4 \sin \theta$ to evaluate $\int_0^2 \sqrt{16 - x^2} dx$.

6

- **9.** A non-singular $n \times n$ matrix A satisfies the equation $A + A^{-1} = I$, where I is the $n \times n$ identity matrix. Show that $A^3 = kI$ and state the value of k.
- 4

10. Use the division algorithm to express 1234_{10} in base 7.

3

11. (a) Write down the derivative of $\sin^{-1}x$.

1

(b) Use integration by parts to obtain $\int \sin^{-1} x \cdot \frac{x}{\sqrt{1-x^2}} dx$.

- 4
- 12. The radius of a cylindrical column of liquid is decreasing at the rate of 0.02 m s^{-1} , while the height is increasing at the rate of 0.01 m s^{-1} .

Find the rate of change of the volume when the radius is 0.6 metres and the height is 2 metres.

5

[Recall that the volume of a cylinder is given by $V = \pi r^2 h$.]

13. A curve is defined parametrically, for all *t*, by the equations

$$x = 2t + \frac{1}{2}t^2$$
, $y = \frac{1}{3}t^3 - 3t$.

Obtain $\frac{dy}{dx}$ and $\frac{d^2y}{dx^2}$ as functions of t.

5

Find the values of t at which the curve has stationary points and determine their nature.

3

Show that the curve has exactly two points of inflexion.

2

14. (a) Use Gaussian elimination to obtain the solution of the following system of equations in terms of the parameter λ .

$$4x + 6z = 1$$

$$2x - 2y + 4z = -1$$

$$-x + y + \lambda z = 2$$

1

5

(b) Describe what happens when $\lambda = -2$.

1

(c) When $\lambda = -1.9$ the solution is x = -22.25, y = 8.25, z = 15.

Find the solution when $\lambda = -2.1$.

2

Comment on these solutions.

1

[Turn over for Questions 15 and 16 on Page four

15. (a) Express
$$\frac{1}{(x-1)(x+2)^2}$$
 in partial fractions.

Marks

(b) Obtain the general solution of the differential equation

$$(x-1)\frac{dy}{dx} - y = \frac{x-1}{(x+2)^2},$$

expressing your answer in the form y = f(x).

7

16. (a) Prove by induction that

$$(\cos\theta + i\sin\theta)^n = \cos n\theta + i\sin n\theta$$

for all integers $n \ge 1$.

6

(b) Show that the real part of $\frac{\left(\cos\frac{\pi}{18} + i\sin\frac{\pi}{18}\right)^{11}}{\left(\cos\frac{\pi}{36} + i\sin\frac{\pi}{36}\right)^{4}}$ is zero.

[END OF QUESTION PAPER]