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FORMULAE LIST
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FORMULAE LIST (continued)

De Moivre’s theorem
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Total marks — 100

Attempt ALL questions

 1. Given f x
x
x

( ) ,= −
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 show that ′ = + −
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 2. State and simplify the general term in the binomial expansion of 2
5
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x
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Hence, or otherwise, find the term independent of x.

 3. Find

 

2

9 16
2−∫ x
dx.

 4. Show that the greatest common divisor of 487 and 729 is 1.

Hence find integers x and y such that 487x + 729y = 1.

 5. Find x e dxx2 3∫ .

 6. Find the values of the constant k for which the matrix 
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 7. A spherical balloon is being inflated.  When the radius is 10 cm the surface area is 

increasing at a rate of 120π cm
2 
s
−1

.

Find the rate at which the volume is increasing at this moment.

(Volume of sphere = 
4

3

3�r , surface area = 4
2�r )

 8. (a) Find the Maclaurin expansions up to and including the term in x3, simplifying 

the coefficients as far as possible, for the following:

 (i) f x e x( ) = 3

 (ii) g x x( ) = +( )−
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 use the expansions from (a) to approximate the 

value of h 1
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 9. Three terms of an arithmetic sequence, u
3
, u

7
 and u

16
 form the first three terms of a 

geometric sequence.

Show that a d= 6

5
, where a and d are, respectively, the first term and common 

difference of the arithmetic sequence with d ≠ 0 .

Hence, or otherwise, find the value of r, the common ratio of the geometric 

sequence.

 10. Using logarithmic differentiation, or otherwise, find 
dy
dx

 given that

e
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2
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 11. Find the exact value of 
x

x x
dx+

+ −∫ 4

1 2 1
2

1

2

( ) ( )
.

 12. (a) Given that m and n are positive integers state the negation of the statement:

m is even or n is even.

(b) By considering the contrapositive of the following statement:

if mn is even then m is even or n is even, 

prove that the statement is true for all positive integers m and n.

 13. Consider the curve in the x y,( )  plane defined by the equation y x
x x

= −
− −
4 3

2
2

8
.

(a) Identify the vertical asymptotes to this curve and justify your answer.

Here are two statements about the curve:

(1)  It does not cross or touch the x-axis.

(2)  The line y = 0 is an asymptote.

(b)  (i) State why statement (1) is false.

 (ii) Show that statement (2) is true.
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 14. The lines L
1
 and L

2
 are given by the following equations.

L
1
: 
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L
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(a) Show that the lines L
1
 and L

2
 intersect and state the coordinates of the point 

of intersection.

(b) Find the equation of the plane containing L
1
 and L

2
.

A third line, L
3
, is given by the equation x y z− = + = −

−
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(c) Calculate the acute angle between L
3
 and the plane.  Give your answer in 

degrees correct to 2 decimal places. 

 15. (a) Given that
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=
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, find 
� �I x , expressing your answer as a single 

fraction. 

(b) Solve the differential equation

cos tan cos
secx dy

dx
y x x
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given that y = 1 when x = 2�.  Express your answer in the form y f x= ( ).

 16. Let S
r rn

r

n

=
+( )=
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 where n is a positive integer.

(a) Prove that, for all positive integers n, S
n
nn =

+1
.

(b) Find

 (i) the least value of n such that S Sn n+ − <
1

1
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 (ii) the value of n for which S S S Sn n n n× × =− − −1 2 8
.

5

3

4

2

7

5

5



MARKS

Page seven

 17. (a) Given FRV VLQ] ș L ș= + , use de Moivre’s theorem and the binomial theorem to 

show that:
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and
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(b) Hence show that 
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(c) Find algebraically the solutions to the equation
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[END OF SPECIMEN QUESTION PAPER]

5

3

3


	MathematicsSQPAHQP
	MathematicsSQPAHMI

